Axiomatization of Fuzzy Attribute Logic over Complete Residuated Lattices

نویسندگان

  • Radim Belohlávek
  • Vilém Vychodil
چکیده

The paper deals with fuzzy attribute logic (FAL) and shows its completeness over all complete residuated lattices. FAL is a calculus for reasoning with if-then rules describing particular attribute dependencies in objectattribute data. Completeness is proved in two versions: classical-style completeness and graded-style completeness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy attribute logic over complete residuated lattices

We present a logic, called fuzzy attribute logic, for reasoning about formulas describing particular attribute dependencies. The formulas are of a form A ⇒ B where A and B are collections of attributes. Our formulas can be interpreted in two ways. First, in data tables with entries containing degrees to which objects (table rows) have attributes (table columns). Second, in database tables where...

متن کامل

Simple axiomatization of reticulations on residuated lattices

‎We give a simple and independent axiomatization of reticulations on residuated lattices‎, ‎which were axiomatized by five conditions in [C‎. ‎Mureşan‎, ‎The reticulation of a residuated lattice‎, ‎Bull‎. ‎Math‎. ‎Soc‎. ‎Sci‎. ‎Math‎. ‎Roumanie‎ ‎51 (2008)‎, ‎no‎. ‎1‎, ‎47--65]‎. ‎Moreover‎, ‎we show that reticulations can be considered as lattice homomorphisms between residuated lattices and b...

متن کامل

On Modal Expansions of Left-continuous T-norm Logics

Modal fuzzy logics is a research topic that has attracted increasing attention in the last years. Several papers have been published treating different aspects, see for instance [6] for a modal expansion of Lukasiewicz logic, [3, 4, 2] for modal expansions of Gödel fuzzy logic, [1] for modal logics over finite residuated lattices, and more recently [7] for a modal expansion of Product fuzzy log...

متن کامل

AN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC

In this paper we extend the notion of  degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and  introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...

متن کامل

Monoidal functional dependencies

We present a complete logic for reasoning with functional dependencies (FDs) with semantics defined over classes of commutative integral partially ordered monoids and complete residuated lattices. The dependencies allow us to express stronger relationships between attribute values than the ordinary FDs. In our setting, the dependencies not only express that certain values are determined by othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006